Abstract

We introduce generalized Wadge games and show that each lower cone in the Weihrauch degrees is characterized by such a game. These generalized Wadge games subsume (a variant of) the original Wadge game, the eraser and backtrack games as well as Semmes’s tree games. In particular, we propose that the lower cones in the Weihrauch degrees are the answer to Andretta’s question on which classes of functions admit game characterizations. We then discuss some applications of such generalized Wadge games.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call