Abstract
The first step in transfer RNA (tRNA) maturation is the cleavage of the 5' end of precursor tRNA (pre-tRNA) catalyzed by ribonuclease P (RNase P). RNase P is either a ribonucleoprotein (RNP) complex with a catalytic RNA subunit or a protein-only RNase P (PRORP). In most land plants, algae, and Euglenozoa, PRORP is a single-subunit enzyme. There are currently no inhibitors of PRORP for use as tools to study the biological function of this enzyme. Therefore, we screened for compounds that inhibit the activity of a model PRORP from A. thaliana organelles (PRORP1) using a high throughput fluorescence polarization (FP) cleavage assay. Two compounds, gambogic acid and juglone (5-hydroxy-1,4-naphthalenedione) that inhibit PRORP1 in the 1 μM range were identified and analyzed. We found these compounds similarly inhibit human mtRNase P, a multi-subunit protein enzyme, and are 50-fold less potent against bacterial RNA-dependent RNase P. Our biochemical measurements indicate that gambogic acid is a rapid-binding, uncompetitive inhibitor targeting the PRORP1-substrate complex while juglone acts as a time-dependent PRORP1 inhibitor. Additionally, X-ray crystal structures of PRORP1 in complex with juglone demonstrate the formation of a covalent complex with cysteine side chains on the surface of the protein. Finally, we propose a model consistent with the kinetic data that involves juglone binding to PRORP1 rapidly to form an inactive enzyme-inhibitor (EI) complex, and then undergoing a slow step to form an inactive covalent adduct with PRORP1. These inhibitors have the potential to be developed into tools to probe PRORP structure and function relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.