Abstract

BackgroundEpigenetics regulating gene expression plays important role in kidney fibrosis. Natural products originating from diverse sources including plants and microorganisms are capable to influence epigenetic modifications. Gambogenic acid (GNA) is a caged xanthone extracted from gamboge resin, exudation of Garcinia hanburyi Hook.f., and the effect of GNA on kidney fibrosis with its underlying mechanism on epigenetics remains unknown. PurposeThis study aimed to explore the role of GNA against kidney fibrogenesis by histone methylation mediating gene expression. MethodsTwo experimental mice of unilateral ureteral obstruction (UUO) and folic acid (FA) were given two dosages of GNA (3 and 6 mg/kg/d). TGF-β1 was used to stimulate mouse tubular epithelial (TCMK-1) cells and siRNAs were transfected to verify the underlying mechanisms of GNA. Histological changes were evaluated by HE, MASSON stainings, immunohistochemistry and immunofluorescence. Western blot and qPCR were used to measure protein/gene transcription levels. ResultsGNA dose-dependently alleviated UUO-induced kidney fibrosis and FA-induced kidney early fibrosis, indicated by the pathology and fibrotic factor changes (α-SMA, collagen I, collagen VI, and fibronectin). Mechanically, GNA reduced enhancer of zeste homolog 2 (EZH2) and H3K27me3, promoted Smad7 transcription, and inhibited TGF-β/Smad3 fibrotic signaling in injured kidneys. Moreover, with TGF-β1-induced EZH2 increasing, GNA suppressed α-SMA, fibronectin and collagen levels in tubular epithelial TCMK-1 cells. Although partially decreasing EZH2, GNA did not influence fibrotic signaling in Smad7 siRNA-transfected TCMK-1 cells. ConclusionEpigenetic inhibition of EZH2 by GNA ameliorated kidney fibrogenesis via regulating Smad7-meidated TGF-β/Smad3 signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call