Abstract

This paper studies a variant of the contest model introduced by Seel and Strack. In the Seel-Strack contest, each agent or contestant privately observes a Brownian motion, absorbed at zero, and chooses when to stop it. The winner of the contest is the contestant who stops at the highest value. The model assumes that all the processes start from a common value $x_0>0$ and the symmetric Nash equilibrium is for each agent to utilise a stopping rule which yields a randomised value for the stopped process. In the two-player contest this randomised value should have a uniform distribution on $[0,2x_0]$.In this paper we consider a variant of the problem whereby the starting values of the Brownian motions are independent, non-negative, random variables that have a common law $\mu$. We consider a two-player contest and prove the existence and uniqueness of a symmetric Nash equilibrium for the problem. The solution is that each agent should aim for the target law $\nu$, where $\nu$ is greater than or equal to $\mu$ in convex order; $\nu$ has an atom at zero of the same size as any atom of $\mu$ at zero, and otherwise is atom free; on $(0,\infty)$ $\nu$ has a decreasing density; and the density of $\nu$ only decreases at points where the convex order constraint is binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.