Abstract

We have investigated, as a function of indium content x, the galvanomagnetic and Shubnikov de Haas (SdH) properties of two-dimensional electron gases (2DEG) formed at lattice matched, strain relaxed InAlAs/InGaAs heterojunctions. These were grown by molecular beam epitaxy on GaAs misoriented substrates with a two degree offcut toward the nearest (110) plane. Variable temperature resistivity and Hall measurements indicate an increase in the electron sheet density ns from 0.78×1012cm−2 for x=0.15 to 1.80×1012 cm−2 for x=0.40 at 300K, and from 0.75×1012cm−2 to 1.67×1012cm−2 at T=1.6K. The room temperature electron mobility, measured along the in plane [110], direction is independent of indium content and equals approximately 9500 cm2/Vs. For T<50K, the mobility is independent of temperature decreasing with increasing x from 82000 cm2/Vs for x=0.15 to 33000 cm2/Vs for x=0.40. The ratios (τt/τq) at 1.6K between the electron relaxation time τt and the single particle relaxation time τq, for the strain relaxed specimens, as well as for pseudomorphically strained Al0.35Ga0.65As/In0.15Ga0.85As structures grown on GaAs substrates, and In0.52Al0.48As/In0.53Ga0.47As heterostructures grown lattice matched on InP substrates. Such a study indicates the presence of inhomogeneities in the 2DEGs of the strain relaxed specimens which appear to be related to the process of strain relaxation. Such inhomogeneities, however, have little effect on the electron relaxation time τt which, at low temperatures, is limited principally by alloy scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call