Abstract

Measurements of the spontaneous Hall effect and magnetization of a series of rare earth-transition metal amorphous film alloys fit a model that the Hall asymmetric scattering is simply the sum of the Hall angles of the alloy components. Alloys of the form Gd <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.2</inf> (TM) <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.8</inf> where TM is Mn, Fe, Co or Ni show a maximum of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\rho_{H}/\rho</tex> the Hall angle, (where ρ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</inf> is the Hall resistivity and ρ the sample resistivity) for Gd <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.2</inf> (TM) <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.8</inf> of 6%. We find that other rare earth elements have lower <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\rho_{H}/\rho</tex> ratios than Gd and that Nd-Fe alloys exhibit a smaller <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\rho_{H}/\rho</tex> than Gd-Fe because the Nd moments are in an disordered state. Of the alloys studied Gd <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.2</inf> (TM) <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.8</inf> is suitable for a Hall sensor because R <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</inf> the spontaneous Hall coefficient ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\rho_{H} = R_{s}4\piM</tex> ) is also large, approximately 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> μΩcm/G. This is because Gd <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.2</inf> Fe <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">.8</inf> is a nearly compensated ferrimagnet and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4\piM</tex> is low. The anisotropic magnetoresistance in rare earth-transition metal alloys is about 0.1 to 0.2% and does not scale with ρ. The Corbino disc type magnetoresistance is found to be smaller than expected because in the demagnetized state magnetic domains remain effective Hall scatterers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call