Abstract

Electrical stimulation to affect localised and controlled release of therapeutic drugs is becoming an attractive option in the treatment of acute diseases or chronic illnesses. Currently the materials developed for this technique rely on power sources to operate, making their progression from the laboratory to the biomedical marketplace problematic. To help alleviate this issue, we have demonstrated autonomously powered controlled release of a drug by exploiting the galvanic couple between biodegradable Mg alloy and a conducting organic polymer. We also demonstrate the ability to control the rate of drug release by utilizing a range of biodegradable polymer coatings on the Mg alloy. Combination of the biodegradable Mg and conducting polymer provides a biocompatible platform for the autonomously controlled release of a drug at therapeutic levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.