Abstract

We are concerned with exploring the probabilities of first order statements for Galton-Watson trees with $Poisson(c)$ offspring distribution. Fixing a positive integer $k$, we exploit the $k$-move Ehrenfeucht game on rooted trees for this purpose. Let $\Sigma $, indexed by $1 \leq j \leq m$, denote the finite set of equivalence classes arising out of this game, and $D$ the set of all probability distributions over $\Sigma $. Let $x_{j}(c)$ denote the true probability of the class $j \in \Sigma $ under $Poisson(c)$ regime, and $\vec{x} (c)$ the true probability vector over all the equivalence classes. Then we are able to define a natural recursion function $\Gamma $, and a map $\Psi = \Psi _{c}: D \rightarrow D$ such that $\vec{x} (c)$ is a fixed point of $\Psi _{c}$, and starting with any distribution $\vec{x} \in D$, we converge to this fixed point via $\Psi $ because it is a contraction. We show this both for $c \leq 1$ and $c > 1$, though the techniques for these two ranges are quite different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.