Abstract

Gal's accurate tables algorithm aims at providing an efficient implementation of mathematical functions with correct rounding as often as possible. This method requires an expensive pre-computation of the values taken by the function - or by several related functions - at some distinguished points. Our improvements of Gal's method are two-fold: on the one hand we describe what is the arguably best set of distinguished values and how it improves the efficiency and accuracy of the function implementation, and on the other hand we give an algorithm which drastically decreases the cost of the pre-computation. These improvements are related to the worst cases for the correct rounding of mathematical functions and to the algorithms for finding them. We demonstrate how the whole method can be turned into practice for 2/sup x/ and sin x for x/spl isin/[1/2,1[, in double precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.