Abstract

G protein-activated K+ channels (GIRK) mediate postsynaptic inhibitory effects of neurotransmitters in the atrium and in the brain by coupling to G protein-coupled receptors (GPCRs). In neurotransmitter-dependent GIRK signalling, Gbetagamma is released from the heterotrimeric Galphabetagamma complex upon GPCR activation, activating the channel and attenuating its rectification. Now it becomes clear that Galpha is more than a mere Gbetagamma donor. We have proposed that Galphai3-GDP regulates GIRK gating, keeping its basal activity low but priming (predisposing) the channel for activation by agonist in intact cells, and by Gbetagamma in excised patches. Here we have further investigated GIRK priming by Galphai3 using a model in which the channel was activated by coexpression of Gbetagamma, and the currents were measured in intact Xenopus oocytes using the two-electrode voltage clamp technique. This method enables the bypass of GPCR activation during examination of the regulation of the channel in intact cells. Using this method, we further characterize the priming phenomenon. We tested and excluded the possibility that our estimates of priming are affected by artifacts caused by series resistance or large K+ fluxes. We demonstrate that both Galphai3 and membrane-attached Gbetagamma scavenger protein, m-phosducin, reduce the basal channel activity. However, Galphai3 allows robust channel activation by coexpressed Gbetagamma, in sharp contrast to m-phosducin, which causes a substantial reduction in the total Gbetagamma-induced current. Furthermore, Galphai3 also does not impair the Gbetagamma-dependent attenuation of the channel rectification, in contrast to m-phosducin, which prevents this Gbetagamma-induced modulation. The Galphai3-induced enhancement of direct activation of GIRK by Gbetagamma, demonstrated here for the first time in intact cells, strongly supports the hypothesis that Galphai regulates GIRK gating under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.