Abstract

Kada proved in a previous paper (Topology Appl., 2009) that the collection of compatible metrics on a locally compact separable metrizable space has the same cofinal type, in the sense of Tukey relation, as the set of functions from ω to ω with respect to eventually dominating order. By generalizing this result, we characterize the order structure of the collection of compatible metrics on a separable metrizable space in terms of generalized Galois-Tukey connection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.