Abstract

Coates and Wiles [1] and B. Perrin-Riou (see [2]) study the arithmetic of an elliptic curve E defined over a number field F with complex multiplication by an imaginary quadratic field K by using p-adic techniques, which combine the classical descent of Mordell and Weil with ideas of Iwasawa’s theory of Zp-extensions of number fields. In a special case they consider a non-cyclotomic Zp-extension F∞ defined via torsion points of E and a certain Iwasawa module attached to E/F, which can be interpreted as an abelian Galois group of an extension of F∞. We are interested in the corresponding non-abelian Galois group and we want to show that the whole situation is quite analogous to the case of the cyclotomic Zp-extension (which is generated by torsion points of Gm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.