Abstract

For every nonconstant polynomial f∈Q[x], let Φ4,f denote the fourth dynatomic polynomial of f. We determine here the structure of the Galois group and the degrees of the irreducible factors of Φ4,f for every quadratic polynomial f. As an application we prove new results related to a uniform boundedness conjecture of Morton and Silverman. In particular we show that if f is a quadratic polynomial, then, for more than 39% of all primes p, f does not have a point of period four in Qp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.