Abstract
On the category of representations of a given quiver we define a tensor product point-wise and arrow-wise. The corresponding Clebsch-Gordan problem of how the tensor product of indecomposable representations decomposes into a direct sum of indecomposable representations is the topic of this thesis.The choice of tensor product is motivated by an investigation of possible ways to modify the classical tensor product from group representation theory to the case of quiver representations. It turns out that all of them yield tensor products which essentially are the same as the point-wise tensor product.We solve the Clebsch-Gordan problem for all Dynkin quivers of type A, D and E6, and provide explicit descriptions of their respective representation rings. Furthermore, we investigate how the tensor product interacts with Galois coverings. The results obtained are used to solve the Clebsch-Gordan problem for all extended Dynkin quivers of type An and the double loop quiver with relations βα=αβ=αn=βn=0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.