Abstract

If (A,s) is a central simple algebra of even degree with orthogonal involution, then for the map of Galois cohomology sets from H^1(F, SO(A,s)) to the 2-torsion in the Brauer group of F, we describe fully the image of a given element of H^1(F, SO(A,s)) and prove that this description is correct in two different ways. As an easy consequence, we derive a result of Bartels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.