Abstract

Ga2O3 has emerged as a promising ultrawide bandgap semiconductor for numerous device applications owing to its excellent material properties. In this paper, we present a comprehensive review on major advances achieved over the past thirty years in the field of Ga2O3-based gas sensors. We begin with a brief introduction of the polymorphs and basic electric properties of Ga2O3. Next, we provide an overview of the typical preparation methods for the fabrication of Ga2O3-sensing material developed so far. Then, we will concentrate our discussion on the state-of-the-art Ga2O3-based gas sensor devices and put an emphasis on seven sophisticated strategies to improve their gas-sensing performance in terms of material engineering and device optimization. Finally, we give some concluding remarks and put forward some suggestions, including (i) construction of hybrid structures with two-dimensional materials and organic polymers, (ii) combination with density functional theoretical calculations and machine learning, and (iii) development of optical sensors using the characteristic optical spectra for the future development of novel Ga2O3-based gas sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.