Abstract

We present a new approach for synthesis of GaN nanowires and microwires by metal organic chemical vapor deposition via a thin titanium film evaporated onto sapphire substrate prior to growth. Titanium etches a two-dimensional GaN layer deposited at the initial stage and GaN nanowires subsequently emerge at the boundaries of the etched grains. These wires grow at an exceptional elongation rate of 18 μm/min and extend radially at a rate of 0.14 μm/min. The GaN layer between the wires grows at a rate of 0.1 μm/min. High material quality of these structures is confirmed by micro-photoluminescence spectroscopy. We investigate the initial nucleation stage, the time evolution of the wire length and diameter, the length and diameter distributions and speculate about a mechanism that yields the observed growth behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.