Abstract

Gallium nitride (GaN) nanoparticles are synthesized by the gallium particle trapping effect in a N2 nonthermal plasma with metallic Ga vapor. A proposed method has an advantage of synthesized GaN nanoparticle purity because the gallium vapor from the inductively heated tungsten boat does not contain any impurity source. The synthesized particle size can be controlled by the amount of Ga vapor, which is adjusted using the plasma emission ratio of nitrogen to gallium, owing to the particle trapping effect. The synthesized nanoparticles are investigated by electron microscopy studies. High-resolution transmission electron microscopy (HRTEM) studies confirm that the synthesized GaN nanoparticles (10–40 nm) crystallize in a single-phase wurtzite structure. Room-temperature photoluminescence (PL) measurements indicate the band-edge emission of GaN at around 378 nm without yellow emission, which implies that the synthesized GaN nanoparticles have high crystallinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call