Abstract

The novel two-dimensional (2-D) Ga-doped In2O3 nanoleaves are synthesized by a simple one-step carbonthermal evaporation method using Cu–Sn alloy as the substrates. Two basic parts construct this leaf-like nanostructure: a long central trunk and two tapered nanoribbons in symmetric distribution in relation to the trunk. The Ga–In–O alloy particles are located at or close to the tips of the central trunks and serve as catalysts for the central trunk growth by the self-catalytic vapor–liquid–solid (VLS) mechanism. And the homoepitaxial growth of tapered nanoribbon on the surface of the central trunk can be explained by vapor–solid (VS) mechanism. The room-temperature photoluminescence (PL) measurement of this nanoscaled Ga-doped In2O3 transparent conducting oxide (TCO) detected two blue peaks located at 432nm and 481nm, respectively, which can be used by Ru-based dye and indicates potential application in dye-sensitized solar cells (DSSCs). The successful preparation of this novel 2-D Ga-doped In2O3 nanoleaves not only enriches the synthesis of TCO materials, but also provides new blocks in future architecture of functional nano-devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call