Abstract
Quantum Spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III-V monolayers and their halides with chair structure (regular hexagonal framework, RHF) were widely studied. Using first-principles calculations, we propose a new structure model for the functionalized group III-V monolayers, which consist of rectangular GaBi-X2 (X=I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a much lower energy than the GaBi-X2 monolayers with chair structure. Remarkably, the DHF GaBi-X2 monolayers are all QSH insulators, which exhibit sizeable nontrivial band gaps ranging from 0.17 eV to 0.39 eV. Those band gaps can be widely tuned by applying different spin-orbit coupling (SOC) strengths, resulting in a distorted Dirac cone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.