Abstract
Objective This work evaluated the potential of 68Ga-labelledNOTA-ICG (1,4,7-triazacyclononane-1,4,7-triacetic acid indocyanine green) for liver reserve imaging. Methods To determine the optimal conditions for generating 68Ga-NOTA-ICG, various reaction parameters were implemented. Quality control analysis was performed using different chromatography techniques. The in vitro and in vivo stability was also measured at specific time points. The radioactivity ratio between n-octanol and water was determined to evaluate the water solubility of 68Ga-NOTA-ICG. The plasma-protein binding rate of the labelled compound was determined by the methanol method. The biodistribution and imaging findings were evaluated in normal animals at different time points after injection. A preliminary imaging evaluation was performed using an animal model of hepatic ischaemia-reperfusion injury, which was confirmed by pathology. Results 68Ga-NOTA-ICG was prepared with very high radiochemical purity (>98%) by reacting at 90°C for 10 min at pH = 3.5∼4.0, with excellent stability in vivo and in vitro (>95% 3 h postpreparation). The in vitro plasma-protein binding rate of 68Ga-NOTA-ICG was 13.01 ± 0.7%, and it showed strong water solubility (log P=−2.01 ± 0.04). We found that in addition to excretion through the biliary tract and intestines, 68Ga-NOTA-ICG can be excreted through the urinary tract. The image quality of 68Ga-NOTA-ICG was very high; imaging agent retained in the area of liver injury could clearly be observed. Conclusion This is the first report on a 68Ga-labelled NOTA-ICG fragment for liver reserve function studies. This complex has promise as a candidate agent for liver reserve imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.