Abstract

In this article, a sustained release formulation of the antioxidant gallic acid (GA) is presented in the form of glutathione responsive disulfide cross-linked poly(ethylene glycol)-based nanogels synthesized via aqueous inverse miniemulsion using atom transfer radical polymerization. The particle size was found to be in the range from 227 ± 51.78 to 573.3 ± 207.2 nm at three drug loading levels achieved i.e. 6.6, 14.26, and 18.29 wt.% of the nanogels with loading efficiency in the range of 60–70%. The release profile of the GA studied at three drug loading levels suggested a controlled release and the nanogels were capable of scavenging radicals and retained the antioxidant activity. The GA-loaded nanogels were found to be biocompatible on human cervical cancer cell lines (HeLa). DCFH-DA (2,7-dichlorofluorescin diacetate) assay evidenced that the nanogels were capable of scavenging the reactive oxygen species in cellular environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.