Abstract

Gallic acid (GA) is a naturally occurring polyhydroxyphenolic compound and an excellent free radical scavenger. In this study, we examined its cytotoxic and biochemical effects on the human HL-60 promyelocytic leukemia cell line. GA caused a significant imbalance of deoxynucleosidetriphosphate (dNTP) pool sizes, indicating ribonucleotide reductase inhibition. Moreover, GA induced dose-dependent apoptosis in HL-60 cells (80μM GA led to the induction of apoptosis in 39% of cells) and attenuated progression from G0/G1 to the S phase of the cell cycle (60μM GA doubled the number of cells in G0/G1 phase from 22 to 44% when compared to untreated controls). We further determined IC50 values of 3.5 and 4.4nM for the inhibition of cyclooxygenases I and II, respectively. When cells were simultaneously treated with GA and trimidox, another inhibitor of RR, highly synergistic growth inhibitory effects could be observed. Taken together, we identified novel biochemical effects of GA which could be the basis for further preclinical and in vivo studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.