Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a serious threat to patients with nosocomial infections, and infection is strongly associated with biofilm formation. Gallic acid (GA) is a natural bioactive compound found in traditional Chinese medicines that exerts potent antimicrobial activity. However, the anti-MRSA biofilm efficacy of GA remained to be determined. This study investigated the antimicrobial activities of GA against MRSA and the mechanisms involved. The results revealed the significant antibacterial and antibiofilm activities of GA. The minimal inhibitory concentration of GA against MRSA was 32 μg/mL and a growth curve assay confirmed the significant inhibitory effect of GA on planktonic MRSA. Crystal violet and XTT assays showed that 8 µg/mL GA effectively inhibited the formation of new biofilms and disrupted existing biofilms by reducing both biofilm biomass and metabolic activities. Alkaline phosphatase and β-galactosidase leakage assays and live/dead staining provided evidence that GA disrupted the integrity of bacterial cell walls and membranes within the biofilm. Scanning electron microscopy observations showed that GA significantly inhibited bacterial adhesion and aggregation, affecting the overall structure of the biofilm. Bacterial adhesion, polysaccharide intercellular adhesion (PIA) production and real-time quantitative PCR assay confirmed that GA inhibited bacterial adhesion, PIA synthesis, and the expression of icaAD and sarA. These results suggested that GA inhibited biofilm formation by inhibiting the expression of sarA, then downregulating the expression of icaA and icaD, thereby reducing the synthesis of PIA to attenuate the adhesion capacity of MRSA. GA is therefore a promising candidate for development as a pharmaceutical agent for the prevention and treatment of bacterial infections caused by MRSA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.