Abstract

Despite recent advances in typhoid fever control, asymptomatic carriage of Salmonella Typhi in the gallbladder remains poorly understood. Aiming to understand if S. Typhi becomes genetically adapted for long-term colonisation in the gallbladder, we performed whole genome sequencing on a collection of S. Typhi isolated from the gallbladders of typhoid carriers. These sequences were compared to contemporaneously sampled sequences from organisms isolated from the blood of acute patients within the same population. We found that S. Typhi carriage was not restricted to any particular genotype or conformation of antimicrobial resistance genes, but was largely reflective of S. Typhi circulating in the general population. However, gallbladder isolates showed a higher genetic variability than acute isolates, with median pairwise SNP distances of 21 and 13 SNPs (p = 2.8x10-9), respectively. Within gallbladder isolates of the predominant H58 genotype, variation was associated with a higher prevalence of nonsense mutations. Notably, gallbladder isolates displayed a higher frequency of non-synonymous mutations in genes encoding hypothetical proteins, membrane lipoproteins, transport/binding proteins, surface antigens, and carbohydrate degradation. Specifically, we identified several gallbladder-specific non-synonymous mutations involved in LPS synthesis and modification, with some isolates lacking the Vi capsular polysaccharide vaccine target due to the 134Kb deletion of SPI-7. S. Typhi is under strong selective pressure in the human gallbladder, which may be reflected phylogenetically by long terminal branches that may distinguish organisms from chronic and acute infections. Our work shows that selective pressures asserted by the hostile environment of the human gallbladder generate new antigenic variants and raises questions regarding the role of carriage in the epidemiology of typhoid fever.

Highlights

  • Typhoid fever, a life-threatening systemic infection caused predominantly by the bacterium Salmonella enterica serovar Typhi

  • Our work shows that selective pressures asserted by the hostile environment of the human gallbladder generates genetic variation, which is not observed in acute isolates, raising questions regarding the role of carriage in the epidemiology of typhoid

  • Typhi isolates recovered from patients with acute typhoid fever living in the same population over the same time period were used for comparison [24] (S1 Table)

Read more

Summary

Introduction

A life-threatening systemic infection caused predominantly by the bacterium Salmonella enterica serovar Typhi Typhi), remains a significant public health problem in resource-poor settings including parts of Asia and Africa [1]. The disease is contracted via ingestion of contaminated food or water or through contact with individuals excreting the organism [2]. The majority of typhoid patients fully recover with appropriate treatment; some individuals can become asymptomatic carriers and shed infectious bacteria in their faeces for an ill-defined period of time. Typhi has been recognized as a public health threat for more than a century, with infamous typhoid carriers like Mary Mallon, a cook in New York, and Mr N, a milker in England, identified in the early part of the 20th century [3,4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call