Abstract

Exact bit or frame error rate expressions for most communication systems are either too complex or unlikely to exist in nice closed forms. A good alternative is to bound the performance measure by tight enough lower and upper bounds. Many tight upper bounds on the error probability of binary codes are based on the so-called Gallager's first bounding technique (GFBT). In this method, Gallager splits the error probability to the joint probability of error and noise residing in a region $\Re$ (here referred to as the Gallager region) plus joint probability of error and noise residing in the complement of $\Re$ (also referred to as regions of many and few errors, respectively); where $\Re$ is a volume around the transmitted codeword. A comprehensive study of a number of upper bounds on the error probability of ML decoding of binary codes based on GFBT is provided. For some bounds, their applicability to other schemes and channels is also pointed out and argued.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.