Abstract

Parasitic species can dramatically alter host traits. Some of these parasite-induced changes can be considered adaptive manipulations that benefit the parasites. Gall-inducing insects are parasites well known for their ability to alter host-plant morphology and physiology, including the distribution of plant defensive compounds. Here it was investigated whether gall-inducing species alter indirect plant defenses, involving the release of volatile compounds that are attractive to foraging natural enemies. Using field and factorial laboratory experiments, volatile production by goldenrod (Solidago altissima) plants was examined in response to attack by two gall-inducing species, the tephritid fly Eurosta solidaginis and the gelechiid moth Gnorimoschema gallaesolidaginis, as well as the meadow spittlebug, Philaenus spumarius, and the generalist caterpillar Heliothis virescens. Heliothis virescens elicited strong indirect defensive responses from S. altissima, but the gall-inducing species and spittlebugs did not. More significantly, infestation by E. solidaginis appeared to suppress volatile responses to subsequent attack by the generalist caterpillar. The extensive control that E. solidaginis apparently exerts over host-plant defense responses may reduce the predation risk for the gall inducer and the subsequent herbivore, and could influence community-level dynamics, including the distribution of herbivorous insect species associated with S. altissima parasitized by E. solidaginis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call