Abstract

The application of a dissipative Galerkin scheme to the numerical solution of the Korteweg de Vries (KdV) and Regularised Long Wave (RLW) equations, is investigated. The accuracy and stability of the proposed schemes is derived using a localised Fourier analysis. With cubic splines as basis functions, the errors in the numerical solutions of the KdV equation for different mesh-sizes and different amounts of dissipation is determined. It is shown that the Galerkin scheme for the RLW equation gives rise to much smaller errors (for a given mesh-size), and allows larger steps to be taken for the integrations in time (for a specified error tolerance). Also, the interaction of two solitons is compared for the KdV and RLW equations, and several differences in their behaviour are found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.