Abstract
Total variation smoothing methods have been proven to be very efficient at discriminating between structures (edges and textures) and noise in images. Recently, it was shown that such methods do not create new discontinuities and preserve the modulus of continuity of functions. In this paper, we propose a Galerkin–Ritz method to solve the Rudin–Osher–Fatemi image denoising model where smooth bivariate spline functions on triangulations are used as approximating spaces. Using the extension property of functions of bounded variation on Lipschitz domains, we construct a minimizing sequence of continuous bivariate spline functions of arbitrary degree, d, for the TV- L2 energy functional and prove the convergence of the finite element solutions to the solution of the Rudin, Osher, and Fatemi model. Moreover, an iterative algorithm for computing spline minimizers is developed and the convergence of the algorithm is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Algorithms & Computational Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.