Abstract
In this paper, we develop Galerkin approximations for determining the stability of delay differential equations (DDEs) with time periodic coefficients and time periodic delays. Using a transformation, we convert the DDE into a partial differential equation (PDE) along with a boundary condition (BC). The PDE and BC we obtain have time periodic coefficients. The PDE is discretized into a system of ordinary differential equations (ODEs) using the Galerkin method with Legendre polynomials as the basis functions. The BC is imposed using the tau method. The resulting ODEs are time periodic in nature; thus, we resort to Floquet theory to determine the stability of the ODEs. We show through several numerical examples that the stability charts obtained from the Galerkin method agree closely with those obtained from direct numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.