Abstract

Selenium, an essential trace element for human health, mainly exerts its biological function through selenoproteins. Selenoprotein M (SelM) is one of the highly expressed selenoproteins in the brain, but its biological effect and molecular mechanism remain unclear. Thus, the interactive protein of SelM was investigated in this paper to guide further study. In order to avoid protein translational stop, the selenocysteine-encoding UGA inside the open reading frame of SelM was site-directly changed to the cysteine-encoding UGC to generate the SelM′ mutant. Meanwhile, its N terminal transmembrane signal peptide was also cut off. This truncated SelM′ was used to screen a human fetal brain cDNA library by the yeast two-hybrid system. A new interactive protein of SelM′ was found to be galectin-1 (Gal-1). This protein-protein interaction was further verified by the results of fluorescence resonance energy transfer techniques, glutathione S-transferase pull-down and co-immunoprecipitation assays. As Gal-1 plays important roles in preventing neurodegeneration and promoting neuroprotection in the brain, the interaction between SelM′ and Gal-1 displays a new direction for studying the biological function of SelM in the human brain.

Highlights

  • Selenium (Se) is an essential trace element for humans and animals

  • The interactive protein of Selenoprotein M (SelM) in the human brain was investigated in this paper

  • A human fetal brain cDNA library was screened by SelM' using the yeast two-hybrid system

Read more

Summary

Introduction

Selenium (Se) is an essential trace element for humans and animals. The biological effect of selenium in human health is mainly executed via selenoproteins in which Se presents in the form of selenocysteine (Sec), the 21st essential amino acid. This Sec residue is located in the active-site of selenoproteins and encoded by the traditional stop codon UGA in its open reading frame (ORF) of mRNA [7]. Previous studies revealed 25 selenoproteins in human and 24 selenoproteins in mouse [8]. Its biological function has not been well studied, especially in the brain

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.