Abstract

BackgroundMesenchymal stromal cells (MSCs) can be used intra-articularly to quell inflammation and promote cartilage healing; however, mechanisms by which MSCs mitigate joint disease remain poorly understood. Galectins, a family of β-galactoside binding proteins, regulate inflammation, adhesion and cell migration in diverse cell types. Galectin-1 and galectin-3 are proposed to be important intra-articular modulators of inflammation in both osteoarthritis and rheumatoid arthritis. Here, we asked whether equine bone marrow-derived MSCs (BMSCs) express higher levels of galectin-1 and -3 relative to synovial fibroblasts and chondrocytes and if an inflammatory environment affects BMSC galectin expression and motility.MethodsEquine galectin-1 and -3 gene expression was quantified using qRT-PCR in cultured BMSCs, synoviocytes and articular chondrocytes, in addition to synovial membrane and articular cartilage tissues. Galectin gene expression, protein expression, and protein secretion were measured in equine BMSCs following exposure to inflammatory cytokines (IL-1β 5 and 10 ng/mL, TNF-α 25 and 50 ng/mL, or LPS 0.1, 1, 10 and 50 μg/mL). BMSC focal adhesion formation was assessed using confocal microscopy, and BMSC motility was quantified in the presence of inflammatory cytokines (IL-1β or TNF-α) and the pan-galectin inhibitor β-lactose (100 and 200 mM).ResultsEquine BMSCs expressed 3-fold higher galectin-1 mRNA levels as compared to cultured synovial fibroblasts (p = 0.0005) and 30-fold higher galectin-1 (p < 0.0001) relative to cultured chondrocytes. BMSC galectin-1 mRNA expression was significantly increased as compared to carpal synovial membrane and articular cartilage tissues (p < 0.0001). IL-1β and TNF-α treatments decreased BMSC galectin gene expression and impaired BMSC motility in dose-dependent fashion but did not alter galectin protein expression. β-lactose abrogated BMSC focal adhesion formation and inhibited BMSC motility.ConclusionsEquine BMSCs constitutively express high levels of galectin-1 mRNA relative to other articular cell types, suggesting a possible mechanism for their intra-articular immunomodulatory properties. BMSC galectin expression and motility are impaired in an inflammatory environment, which may limit tissue repair properties following intra-articular administration. β-lactose-mediated galectin inhibition also impaired BMSC adhesion and motility. Further investigation into the effects of joint inflammation on BMSC function and the potential therapeutic effects of BMSC galectin expression in OA is warranted.

Highlights

  • Mesenchymal stromal cells (MSCs) can be used intra-articularly to quell inflammation and promote cartilage healing; mechanisms by which MSCs mitigate joint disease remain poorly understood

  • Differentiation assay Tri-lineage differentiation capability was demonstrated in all primary bone marrow-derived MSC (BMSC) lines used for cytokine stimulation experiments, confocal imaging experiments, and migration experiments (Fig. 1)

  • Galectin1 expression was elevated in cultured articular cells as compared to freshly harvested joint tissues, with galectin1 significantly increased in cultured synoviocytes as compared to synovial membrane tissue (p = 0.004) and cultured chondrocytes as compared to articular cartilage tissue (p < 0.0001)

Read more

Summary

Introduction

Mesenchymal stromal cells (MSCs) can be used intra-articularly to quell inflammation and promote cartilage healing; mechanisms by which MSCs mitigate joint disease remain poorly understood. Galectin-1 and galectin-3 are proposed to be important intra-articular modulators of inflammation in both osteoarthritis and rheumatoid arthritis. Mesenchymal stem cells (MSCs) were initially appealing as a cell source for the repair of articular cartilage and other musculoskeletal injuries due to their multilineage potential [1]. MSCs have been used intra-articularly to decrease joint inflammation and promote cartilage healing in both experimental animal models of OA [3, 6, 7] and in human clinical trials [8, 9]; the mechanisms by which MSCs perform these actions are poorly understood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.