Abstract
Galbanic acid is a natural sesquiterpene coumarin compound with different biological activities, particularly cytotoxicity against LNCaP (an androgen-dependent prostate cancer cell line). Galbanic acid induces apoptosis in LNCaP via down-regulation of androgen receptor. However, the poor water-solubility of galbanic acid limits further in vitro and in vivo studies. In this study we present the synthesis of galbanic acid-coated Fe3O4 magnetic nanoparticles and their cytotoxicity evaluation on three prostate cancer cell lines, including PC3 (an androgen-independent cell line), LNCaP, and DU145 (an androgen-independent cell line). The synthesized nanoparticles were characterized by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, scattering electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering, and vibrating sample magnetometry. Our cytotoxicity evaluation demonstrated that galbanic acid was cytotoxic only against LNCaP cells, while the galbanic acid-coated Fe3O4 nanoparticles showed cytotoxicity on all tested cells, including androgen-dependent and -independent cell lines. This indicates that other mechanisms are involved in the cytotoxicity of galbanic acid in addition to androgen receptor down-regulation. In conclusion, the loading of galbanic acid on the surface of Fe3O4 magnetic nanoparticles turned out to be a successful approach to enhance the solubility and cytotoxicity of this compound.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.