Abstract

Abstract We present new stellar mass functions at z ∼ 6, z ∼ 7, z ∼ 8, z ∼ 9 and, for the first time, z ∼ 10, constructed from ∼800 Lyman-break galaxies previously identified over the eXtreme Deep Field and Hubble Ultra-Deep Field parallel fields and the five Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. Our study is distinctive due to (1) the much deeper (∼200 hr) wide-area Spitzer/Infrared Array Camera (IRAC) imaging at 3.6 μm and 4.5 μm from the Great Observatories Origins Deep Survey Re-ionization Era Wide-area Treasury from Spitzer program (GREATS) and (2) consideration of z ∼ 6–10 sources over a 3× larger area than those of previous Hubble Space Telescope+Spitzer studies. The Spitzer/IRAC data enable ≥2σ rest-frame optical detections for an unprecedented 50% of galaxies down to a stellar mass limit of ∼ 10 8  ⊙ across all redshifts. Schechter fits to our volume densities suggest a combined evolution in the characteristic mass  * and normalization factor ϕ * between z ∼ 6 and z ∼ 8. The stellar mass density (SMD) increases by ∼1000× in the ∼500 Myr between z ∼ 10 and z ∼ 6, with indications of a steeper evolution between z ∼ 10 and z ∼ 8, similar to the previously reported trend of the star formation rate density. Strikingly, abundance matching to the Bolshoi–Planck simulation indicates halo mass densities evolving at approximately the same rate as the SMD between z ∼ 10 and z ∼ 4. Our results show that the stellar-to-halo mass ratios, a proxy for the star formation efficiency, do not change significantly over the huge stellar mass buildup occurred from z ∼ 10 to z ∼ 6, indicating that the assembly of stellar mass closely mirrors the buildup in halo mass in the first ∼1 Gyr of cosmic history. The James Webb Space Telescope is poised to extend these results into the “first galaxy” epoch at z ≳ 10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.