Abstract
We quantify the correlations between gas-phase and stellar metallicities and global properties of galaxies, such as stellar mass, halo mass, age and gas fraction, in the Evolution and Assembly of GaLaxies and their Environments suite of cosmological hydrodynamical simulations. The slope of the correlation between stellar mass and metallicity of star-forming (SF) gas (M*–ZSF,gas relation) depends somewhat on resolution, with the higher resolution run reproducing a steeper slope. This simulation predicts a non-zero metallicity evolution, increasing by ≈0.5 dex at ∼109 M⊙ since z = 3. The simulated relation between stellar mass, metallicity and star formation rate at z ≲ 5 agrees remarkably well with the observed fundamental metallicity relation. At M* ≲ 1010.3 M⊙ and fixed stellar mass, higher metallicities are associated with lower specific star formation rates, lower gas fractions and older stellar populations. On the other hand, at higher M*, there is a hint of an inversion of the dependence of metallicity on these parameters. The fundamental parameter that best correlates with the metal content, in the simulations, is the gas fraction. The simulated gas fraction–metallicity relation exhibits small scatter and does not evolve significantly since z = 3. In order to better understand the origin of these correlations, we analyse a set of lower resolution simulations in which feedback parameters are varied. We find that the slope of the simulated M*–ZSF,gas relation is mostly determined by stellar feedback at low stellar masses (M* ≲ 1010 M⊙), and at high masses (M* ≳ 1010 M⊙) by the feedback from active galactic nuclei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.