Abstract

We study galaxy mergers with various mass ratios using N-body simulations, with an emphasis on the unequal-mass mergers in the relatively unexplored range of mass-ratios 4:1-10:1. Our recent work (Bournaud et al. 2004) shows that the above range of mass ratio results in hybrid systems with spiral-like luminosity profiles but with elliptical-like kinematics, as observed in the data analysis for a sample of mergers by Jog & Chitre (2002). In this paper, we study the merger remnants for mass ratios from 1:1 to 10:1 while systematically covering the parameter space. We obtain the morphological and kinematical properties of the remnants, and also discuss the robustness and the visibility of disks in the merger remnants with a random line-of-sight. We show that the mass ratios 1:1-3:1 give rise to elliptical remnants whereas the mass ratios 4.5:1-10:1 produce hybrid systems with mixed properties. We find that the transition between disk-like and elliptical remnants occurs between a narrow mass range of 4.5:1-3:1. The unequal-mass mergers are more likely to occur than the standard equal-mass mergers studied in the literature so far, and we discuss their implications for the evolution of galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.