Abstract
The boundaries of galaxy groups and clusters are defined by the interplay between the Newtonian attractive force and the decoupling from the local expansion of the Universe. This work extends the definition of a zero radial acceleration surface (ZRAS) and the turnaround surface (TS) for a general distribution of the masses in an expanding background, governed by the cosmological constant. We apply these definitions to different galaxy groups in the local Universe, mapping these groups up to ten megaparsec distances. We discuss the dipole and the quadrupole rate for the Local Group of Galaxies and the implementations on the Hubble diagram correction and galaxy groups virialization. With these definitions, we present the surfaces showing the interplay between the local expansion vs the local Newtonian attraction for galaxy groups in the local Universe. Further, we estimate the masses of different galaxy groups and show that the inclusion of the Cosmological Constant in the analysis predicts these masses to be higher by 5-10%. For instance the Local Group of galaxies is estimated to be (2.47±0.08)⋅1012M⊙. For the groups with enough tracers close to the TS, the contribution of the Cosmological Constant makes the masses to be even higher. The results show the importance of including the local cosmic expansion in analyzing the Cosmic Flow of the local Universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.