Abstract

In many scientific disciplines complex computer models are used to understand the behaviour of large scale physical systems. An uncertainty anal- ysis of such a computer model known as Galform is presented. Galform models the creation and evolution of approximately one million galaxies from the begin- ning of the Universe until the current day, and is regarded as a state-of-the-art model within the cosmology community. It requires the specification of many in- put parameters in order to run the simulation, takes significant time to run, and provides various outputs that can be compared with real world data. A Bayes Linear approach is presented in order to identify the subset of the input space that could give rise to acceptable matches between model output and measured data. This approach takes account of the major sources of uncertainty in a consistent and unified manner, including input parameter uncertainty, function uncertainty, observational error, forcing function uncertainty and structural uncertainty. The approach is known as History Matching, and involves the use of an iterative suc- cession of emulators (stochastic belief specifications detailing beliefs about the Galform function), which are used to cut down the input parameter space. The analysis was successful in producing a large collection of model evaluations that exhibit good fits to the observed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.