Abstract
A composite sample of NIR-selected galaxies having extended multicolor coverage has been used to probe the cosmological evolution of the blue luminosity function and of the stellar mass function. The bright fraction of the sample has spectroscopic redshifts, and the remaining fraction well-calibrated photometric redshifts. The resulting blue luminosity function shows an increasing brightening with redshift respect to the local luminosity function. Hierarchical CDM models predictions are in agreement only at low and intermediate redshifts but fail to reproduce the observed brightening at high redshifts (z ∼ 2–3). This brightening marks the epoch where starburst activity triggered by galaxy interactions could be an important physical mechanism for the galaxy evolution. At the same time the NIR galaxy sample has been used to trace the evolution of the cosmological stellar mass density up to ∼3. A clear decrease of the average mass density is apparent with a fraction ∼15% of the local value at z ∼ 3. UV bright star-forming galaxies are substancial contributors to the evolution of the stellar mass density. Although these results are globally consistent with Λ–CDM scenarios, they tend to underestimate the mass density produced by more massive galaxies present at z > 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.