Abstract
We have initiated a survey using the newly commissioned X-shooter spectrograph to target candidate relatively metal-rich damped Lyman-alpha absorbers (DLAs). The spectral coverage of X-shooter allows us to search for not only Lyman-alpha emission, but also rest-frame optical emission lines. We have chosen DLAs where the strongest rest-frame optical lines ([OII], [OIII], Hbeta and Halpha) fall in the NIR atmospheric transmission bands. In this first paper resulting from the survey, we report on the discovery of the galaxy counterpart of the z_abs = 2.354 DLA towards the z=2.926 quasar Q2222$-0946. This DLA is amongst the most metal-rich z>2 DLAs studied so far at comparable redshifts and there is evidence for substantial depletion of refractory elements onto dust grains. We measure metallicities from ZnII, SiII, NiII, MnII and FeII of -0.46+/-0.07, -0.51+/-0.06, -0.85+/-0.06, -1.23+/-0.06, and -0.99+/-0.06, respectively. The galaxy is detected in the Lyman-alpha, [OIII] lambda4959,5007 Halpha emission lines at an impact parameter of about 0.8 arcsec (6 kpc at z_abs = 2.354). We infer a star-formation rate of 10 M_sun yr^-1, which is a lower limit due to the possibility of slit-loss. Compared to the recently determined Halpha luminosity function for z=2.2 galaxies the DLA-galaxy counterpart has a luminosity of L~0.1L^*_Halpha. The emission-line ratios are 4.0 (Lyalpha/Halpha) and 1.2 ([OIII]/Halpha). The Lyalpha line shows clear evidence for resonant scattering effects, namely an asymmetric, redshifted (relative to the systemic redshift) component and a much weaker blueshifted component. The fact that the blueshifted component is relatively weak indicates the presence of a galactic wind. The properties of the galaxy counterpart of this DLA is consistent with the prediction that metal-rich DLAs are associated with the most luminous of the DLA-galaxy counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.