Abstract

We investigate the hypothesis that the cores of elliptical galaxies and bulges are created from the binding energy liberated by the coalescence of supermassive binary black holes during galaxy mergers. Assuming that the central density profiles of galaxies were initially steep power laws, ρ∼r−2, we define the ‘mass deficit’ as the mass in stars that had to be removed from the nucleus in order to produce the observed core. We use non-parametric deprojection to compute the mass deficit in a sample of 35 early-type galaxies with high-resolution imaging data. We find that the mass deficit correlates well with the mass of the nuclear black hole, consistent with the predictions of merger models. We argue that cores in haloes of non-interacting dark matter particles should be comparable in size to those observed in the stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.