Abstract

We present measurements of the two-point galaxy angular correlation function as a function of apparent magnitude, color, and morphology. We present new galaxy number counts to limiting magnitudes of I=24.0 and V=25.0. We find $\omega(\theta)$ to be well described by a power-law of slope -0.8. We find the amplitude of the correlation function to decrease monotonically with increasingly faint apparent magnitude. We compare with predictions utilizing redshift distributions based on deep spectroscopic observations. We conclude that simple redshift-dependent models which characterize evolution by means of the epsilon parameter inadequately describe the observations. We find a strong clustering dependence on V-I color because galaxies of extreme color lie at similar redshifts and the angular correlation functions for these samples are minimally diluted by chance projections. We then present the first attempt to investigate the redshift evolution of clustering, utilizing a population of galaxies of the same morphological type and absolute luminosity. We study the dependence of $\omega(\theta)$ on redshift for Lstar early-type galaxies in the redshift range 0.2<z<0.9. Although uncertainties are large, we find the evolution in the clustering of these galaxies to be consistent with stable clustering [epsilon=0]. We find Lstar early-type galaxies to cluster slightly more strongly (rnought = 5.25\pm0.28 \hMpc assuming epsilon=0) than the local full field population. This is in good agreement with the 2dFGRS value for Lstar early-type galaxies in the local universe (abridged).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call