Abstract

Recently a number of studies have proposed that the dispersion along the star formation rate - stellar mass relation ($\sigma_{\mathrm{sSFR}}$-M$_{*}$) is indicative of variations in star-formation history (SFH) driven by feedback processes. They found a 'U'-shaped dispersion and attribute the increased scatter at low and high stellar masses to stellar and active galactic nuclei feed-back respectively. However, measuring $\sigma_{\mathrm{sSFR}}$ and the shape of the $\sigma_{\mathrm{sSFR}}$-M$_{*}$ relation is problematic and can vary dramatically depending on the sample selected, chosen separation of passive/star-forming systems, and method of deriving star-formation rates ($i.e.$ H$\alpha$ emission vs spectral energy distribution fitting). As such, any astrophysical conclusions drawn from measurements of $\sigma_{\mathrm{sSFR}}$ must consider these dependencies. Here we use the Galaxy And Mass Assembly survey to explore how $\sigma_{\mathrm{sSFR}}$ varies with SFR indicator for a variety of selections for disc-like `main sequence' star-forming galaxies including colour, star-formation rate, visual morphology, bulge-to-total mass ratio, S\'{e}rsic index and mixture modelling. We find that irrespective of sample selection and/or SFR indicator, the dispersion along the sSFR-M$_{*}$ relation does follow a 'U'-shaped distribution. This suggests that the shape is physical and not an artefact of sample selection or method. We then compare the $\sigma_{\mathrm{sSFR}}$-M$_{*}$ relation to state-of-the-art hydrodynamical and semi-analytic models and find good agreement with our observed results. Finally, we find that for group satellites this 'U'-shaped distribution is not observed due to additional high scatter populations at intermediate stellar masses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.