Abstract

Galantamine, an inhibitor of acetylcholinesterase, promotes hippocampal neurogenesis, but the exact mechanism for this is not known. In the present study, we examined the mechanisms underlying the effects of acute galantamine on neurogenesis in the mouse hippocampus. Galantamine (3 mg/kg) increased the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells in the subgranular zone of the dentate gyrus. This effect was blocked by the muscarinic receptor antagonist scopolamine and the preferential M1 muscarinic receptor antagonist telenzepine, but not by the nicotinic receptor antagonists mecamylamine and methyllycaconitine. Galantamine did not alter the ratio of neuronal nuclei (NeuN)- or glial fibrillary acidic protein (GFAP)-positive cells to BrdU-labeled cells in the subgranular zone and granule cell layer. Galantamine (1, 3 mg/kg) promoted the survival of 2-wk-old newly divided cells in mice in the granule cell layer of the dentate gyrus, whereas it did not affect the survival of newly divided cells at 1 and 4 wk. Galantamine-induced increases in cell survival were blocked by the α7 nicotinic receptor antagonist methyllycaconitine, but not by scopolamine. Bilateral injection of recombinant IGF2 into the dentate gyrus of the hippocampus mimicked the effects of galantamine. The effects of galantamine were blocked by direct injection of the IGF1 receptor antagonist JB1. These findings suggest that galantamine promotes neurogenesis via activation of the M1 muscarinic and α7 nicotinic acetylcholine receptors. The present study also suggests that IGF2 is involved in the effects of galantamine on the survival of 2-wk-old immature cells in the granule cell layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.