Abstract

Galanin-like peptide (GALP) stimulates the release of gonadotropin-releasing hormone in rodent and primate species. The widespread distribution of GALP fibers in the hypothalamus suggests that this neuropeptide may influence hypophysiotropic factors that control other aspects of adenohypophysial function. Here we studied the effects of intracerebroventricular administration of GALP on serum levels of growth hormone (GH) and prolactin (PRL) in adult male monkeys. The animals (n = 5) were orchidectomized and implanted with testosterone-containing Silastic capsules to maintain the circulating testosterone levels (∼9 ng/ml) within the physiological range. The animals were implanted with an intracerebroventricular cannula and venous catheter for continuous access to the cerebroventricular and the venous circulation, respectively. GALP (500 µg), or vehicle alone, was administered as a bolus intracerebroventricular injection, and sequential blood samples were collected at 20-min intervals for 3 h before and after the injections. Within 20 min following GALP injection, the GH concentrations increased 3.5-fold, and a peak level (12.9 ± 2.7 ng/ml) was observed 40 min after injection. The GH levels remained elevated until 60 min after injection and thereafter declined to values similar to those observed at 0 min. The GH concentrations were not changed by vehicle alone. A decline in PRL levels was observed following GALP administration, with significantly reduced concentrations occurring between 60 and120 min following the injection of the neuropeptide. We conclude that in the monkey GALP is a potent secretagogue for GH and an inhibitor of PRL secretion and that GALP may, therefore, interact with the hypothalamic circuitry involved in the regulation of these pituitary hormones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.