Abstract

Galanin (Gal) is a neuropeptide with multiple functions that is widely expressed in the central and peripheral nervous systems of vertebrates. Anatomical and functional evidence suggests a possible role in regulating reproduction in fishes. To test this possibility, we have isolated and characterized two gal alternative transcripts in European sea bass (Dicentrarchus labrax) that encode two prepropeptides, respectively of 29 (gal_MT853221) and 53 (gal_MT853222) amino acids. The two gal transcripts are highly expressed in brain, pituitary and gonads, and appear to be differentially regulated in males and females. In males, gal_MT853222 in the hypothalamus and gal_MT853221 in the pituitary were downregulated with the progression of spermatogenesis (stages I-III). Both transcripts are downregulated in testicles of 1-year (precocious) and 2-year spermiating males compared to immature fish of the same age. Gal peptides and receptors are expressed throughout ovarian development in the hypothalamic-pituitary-gonadal (HPG) axis of females. In the testis, immunoreactive Gal-29 and Gal-53 peptides were detected in blood vessels and Leydig cells during the spermatogenesis stages I-III but Gal immunostaining was barely undetected in more advanced stages. In the ovary, both peptides localized in interstitial cells and blood vessels and in theca cells surrounding the maturing oocytes. The immunolocalization of galanin in Leydig and theca cells suggests a possible role in steroid production regulation. The different pattern of gal expression and Gal localization in the testis and ovary may suggest the possibility that androgens and estrogens may also regulate Gal gene transcription and translation. Altogether, this study showed evidence for the possible involvement of locally produced Gal in gametogenesis and that its production is differentially regulated in male and female gonads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.