Abstract

By using immunofluorescence methodology, extensive galanin (GAL) and GAL message-associated peptide (GMAP)-positive terminal networks were observed in the hippocampal formation. The majority of the GAL/GMAP fibers were dopamine beta-hydroxylase- (DBH) positive, that is, they were noradrenergic. This finding was established with GAL/GMAP-DBH double-staining and with 6-hydroxy-dopamine treatment, which totally abolished all fibers in which GAL/GMAP and DBH coexisted. Also, reserpine treatment caused a marked depletion of GAL. No evidence for GAL/GMAP coexistence with 5-hydroxytryptamine was obtained. In the ventral hippocampus, GAL/GMAP-, DBH-negative fibers were seen in the stratum oriens, the anterior stratum radiatum, along the granule cell layer and in the strata oriens and alveus. In the locus coeruleus (LC), around 80% of the GMAP-positive neurons contained neuropeptide tyrosine (NPY), and about 40% of the NPY-positive neurons expressed GMAP. GAL-R1 receptor mRNA was expressed in Barrington's nucleus (close to the LC), but was not detected in the hippocampal formation/dorsal cortical areas. GAL-R2 receptor mRNA was found in the granule cell layer in the dentate gyrus. The present results show that most, but not all, immunohistochemically detectable GAL/GMAP in the hippocampal formation/dorsal cortex is present in noradrenergic nerve terminals originating in the LC, which has a robust GAL/GMAP synthesis. The functional role of GAL may be related to noradrenaline, possibly by a presynaptic action. However, the presence of GAL in other systems and of GAL-R2 receptor mRNA in granule cells also indicates other targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.