Abstract

Changes in neuropeptide expression occur in sensory, motor, and sympathetic neurons following axotomy. The particular pattern of peptide changes that occurs varies among the three cell types. We have studied the regulation in the rat superior cervical ganglion of the expression of galanin, a peptide previously shown to increase in axotomized sensory and motor neurons. While normally only an occasional neuron exhibiting galanin-like immunoreactivity is found in this ganglion, at two days after transection of the postganglionic internal and external carotid nerves, immunostaining can be observed in many neurons throughout the ganglion. Similar changes are found when ganglia are placed in organ culture for two days. The distribution of immunostained neurons after section of only one of the postganglionic trunks suggests that changes in galanin-like immunoreactivity occur only within neurons whose axons are transected. None the less, even when both nerve trunks are transected, only about half of the neurons in the ganglion exhibit galanin-like immunoreactivity, indicating that only a proportion of the axotomized neurons exhibit a detectable response. The few immunostained neurons seen after section of the cervical sympathetic trunk may also represent axotomized neurons. Galanin-like immunoreactivity extracted from the ganglion co-chromatographs with authentic galanin, and the level of this immunoreactivity increases dramatically after axotomy and explantation, and modestly after decentralization. These same manipulations produce parallel increases in the level of galanin messenger RNA. Together, the findings indicate that the expression of galanin increases in sympathetic neurons after axotomy. Galanin is thus the first neuropeptide whose expression has been shown to increase after transection of all three types of peripheral axons that have been studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.