Abstract

Smad3 linker phosphorylation is a candidate target for several kinases that play important roles in cancer cell initiation, proliferation and progression. Also, Smad3 is an essential intracellular mediator of TGF-β1-induced transcriptional responses during carcinogenesis. Therefore, it is highly advantageous to identify and develop inhibitors targeting Smad3 linker phosphorylation for the treatment of cancers. Galangin (3,5,7-trihydroxyflavone) has been known to be an active flavonoid showing a cytotoxic effect on several cancer cells. However, the mechanism of action of galangin in various cancers remains unclear, and there has been no report concerning regulation of Smad3 phosphorylation by galangin. In the present study, we show that galangin significantly induced apoptosis and inhibited cell proliferation in the presence of TGF-β1 in both human prostate and pancreatic cancer cell lines. Particularly, galangin effectively inhibits phosphorylation of the Thr-179 site at Smad3 linker region through suppression of CDK4 phosphorylation. Thus, galangin can be a promising candidate as a selective inhibitor to suppress phosphorylation of Smad3 linker region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call