Abstract

Skp1 an essential component of the SCF (Skp1/cullin/F-box) E3 ubiquitin ligases, which target proteins for degradation by the 26S proteasome. We generated a skp1dM mutant strain that is defective for galactose induction of the GAL1 gene and we have found that galactose-induced protein degradation of the repressor Mig2 is defective in this strain. Mig2 degradation was also abolished in cells lacking the protein kinase Snf1 and the F-box protein Das1, suggesting that Snf1 triggers galactose-induced protein degradation of Mig2 by SCFDas1. Chromatin immunoprecipitation showed that Mig2 associates with the GAL1 promoter upon the galactose-induced exit of Mig1 in skp1dM cells, but not in wild-type cells, suggesting that the conditional degradation of Mig2 is required to prevent it from binding to the GAL1 promoter under inducing conditions. A galactose-stable deletion derivative of Mig2 caused a strong Mig (multi-copy inhibition of GAL gene expression) phenotype, confirming that galactose induction of the GAL1 gene requires the degradation of the repressor Mig2. Our results shed new light on the conflicting reports about the functional role of the degradation of transcriptional activators and indicate that gene expression studies interfering with proteasome degradation should take the stabilization of potential repressors into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.